Characterisation of human knee meniscus cell phenotype.
نویسندگان
چکیده
OBJECTIVE Studies on the biology of the human meniscus cell are scarce. The objective of our studies was to assess survival/proliferation of human meniscus cells in different culture conditions and to characterize the extracellular matrix (ECM) produced by these cells in these artificial environments. The composition of this ECM offers a variable to define the distinct meniscus cell phenotype. MATERIALS AND METHODS Human meniscus cells were isolated enzymatically from visually intact lateral and medial knee menisci. Cells were cultured in monolayer conditions or in alginate gel. The composition of the cell-associated matrix (CAM) accumulated by the isolated cells during culture was investigated and compared to the CAM of articular chondrocytes cultured in alginate using flow cytometry with fluorescein isothiocyanate-conjugated monoclonal antibodies against type I collagen, type II collagen and aggrecan. Additional cell membrane markers analysis was performed to further identify the different meniscus cell populations in the alginate culture conditions and meniscus tissue sections. Proliferation was analyzed using the Hoechst 33258 dye method. In some experiments, the effect of TGFbeta1 on some of these variables was investigated. RESULTS The CAM of monolayer cultured meniscus cells is composed of high amounts of type I and II collagen and low amounts of aggrecan. A major population of alginate cultured meniscus cells on the other hand synthesized a CAM containing high amounts of type I collagen, low amounts of type II collagen and high amounts of aggrecan. This population is CD44+CD105+CD34-CD31-. In contrast, a minor cell population in the alginate culture did not accumulate ECM and was mainly CD34+. The CAM of alginate cultured articular chondrocytes is composed of low amounts of type I collagen, high amounts of type II collagen and aggrecan. The expression of aggrecan and of type II collagen was increased by the addition of TGFbeta1 to the culture medium. The proliferation of meniscus cells is increased in the monolayer culture conditions. Cell numbers decrease slightly in the alginate culture, but can be increased after the addition of TGFbeta1. CONCLUSION These results demonstrate that the human meniscus is populated by different cell types which can be identified by a distinct CAM composition and membrane marker expression. Unlike the monolayer culture conditions, the alginate culture conditions appear to favor a more fibrochondrocyte-like cell accumulating a CAM resembling the native tissue composition. This CAM composition is distinctly different from the CAM composition of phenotypically stable articular cartilage chondrocytes cultured in the same alginate matrix.
منابع مشابه
Save the Meniscus, A Good Strategy to Preserve the Knee
With increasing life expectancy, the demand for preservation of native articular cartilage is increasing to delay joint arthroplasties. In the knee, there are many different strategies to preserve the articular cartilage including but not limited to corrective osteotomies, chondral injury restoration, intraarticular injection of cells or growth factors(PRP). However, One of the most important s...
متن کاملRegional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering.
An abundant cell source is the cornerstone of most tissue engineering strategies, but extracting cells from the knee meniscus is hindered by its dense fibrocartilaginous matrix. Identifying a method to efficiently isolate meniscus cells is important, as it can reduce the cost and effort required to perform meniscus engineering research. In this study, six enzymatic digestion regimens used for c...
متن کاملBiomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells.
Central to understanding mechanotransduction in the knee meniscus is the characterization of meniscus cell mechanics. In addition to biochemical and geometric differences, the inner and outer regions of the meniscus contain cells that are distinct in morphology and phenotype. This study investigated the regional variation in meniscus cell mechanics in comparison with articular chondrocytes and ...
متن کاملAccuracy of MRI in Comparison with Arthroscopic Findings in the Diagnosis of Anterior Cruciate Ligament and Meniscus Tears
Background: Magnetic resonance imaging (MRI) is of great aid in the diagnosis of knee lesions. Nevertheless, arthroscopy has remained the reference standard for the diagnosis of internal derangements of the knee, against which alternative diagnostic modalities should be compared. This study was designed to assess the value of MRI and clinical examination in the diagnosis of Anterior Cruciate Li...
متن کاملMultilayered silk scaffolds for meniscus tissue engineering.
Removal of injured/damaged meniscus, a vital fibrocartilaginous load-bearing tissue, impairs normal knee function and predisposes patients to osteoarthritis. Meniscus tissue engineering solution is one option to improve outcomes and relieve pain. In an attempt to fabricate knee meniscus grafts three layered wedge shaped silk meniscal scaffold system was engineered to mimic native meniscus archi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Osteoarthritis and cartilage
دوره 13 7 شماره
صفحات -
تاریخ انتشار 2005